Keywords, statements, definitions

03.03.

- 1. Schur's theorem: If the index of the center of a group is finite, then the commutator subgroup is finite. steps of the proof:
 - Finite index subgroup of a finitely generated group is finitely generated.
 - If the center is of finite index, then the commutator subgroup is finitely generated.
 - $G' \cap Z(G)$ is a finite index subgroup of G' (so it is also finitely generated)
 - The exponent of $G' \cap Z(G)$ is finite.
- 2. *e* is the **exponent** of a group *G* if $g^e = 1$ for every $g \in G$ and for every $f \leq e$ there is $g_f \in G$ such that $g_f^f \neq 1$.
- 3. normal series: Let G be a group

$$N_0 \leq N_1 \leq \ldots \leq N_n = G$$

is a (sub)normal series of G if $N_i \leq N_{i+1}$ for $i = 0, \ldots, n-1$.

4. composition series: Let G be a group

$$N_0 \le N_1 \le \ldots \le N_n = G$$

is a composition series of G if $N_i \leq N_{i+1}$ for i = 0, ..., n-1 and the factors n_{i+1}/N_i are simple.